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Field-induced ordering in critical antiferromagnets
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Transfer-matrix scaling methods have been used to study critical properties of field-induced phase transitions
of two distinct two-dimensional antiferromagnets with discrete-symmetry order parameters: triangular-lattice
Ising systemgTIAF) and the square-lattice three-state Potts m@8BIAF-3. Our main findings are summa-
rized as follows. For TIAF, we have shown that the critical line leaves the zero-temperature, zero-field fixed
point at a finite angle. Our best estimate of the slope at the origidTs /dH)1-y-c=4.74+0.15. For
SPAF-3 we provided evidence that the zero-field correlation length divergééTas0, H=0)=exp@/T¥),
with x=1.08+0.13, through analysis of the critical curvekht= 0 plus crossover arguments. For SPAF-3 we
have also ascertained that the conformal anomaly and decay-of-correlations exponent bebhatt=3:c
=1, »=1/3.(b) H#0:c=1/2, »=1/4.[S1063-651X99)11403-X

PACS numbeps): 05.50-+q, 05.70.Jk, 64.60.Fr, 75.10.Nr

[. INTRODUCTION cal curve nealf=H=0 in a fundamental way, an accurate
evaluation ofT;(H) is clearly of interest. With this in mind,
Frustrated systems with macroscopically degeneratbere we investigate the finite-temperature field-induced tran-
ground states still pose intriguing theoretical challenges. Fosition in both the TIAF and the SPAF-3, by means of
pure Ising andy-state Potts antiferromagngi&F’s), in par-  transfer-matrix scaling method45,16. For TIAF we con-
ticular, this degeneracy results solely from the interplay be€entrate on the shape of the critical curve closelteH
tween “dynamics”(i.e., the number of states per lattice site =0, for reasons to be stated in the corresponding section. For
and geometrylattice topology. In this paper we shall deal SPAF-3 we determine the critical curve, as well as the con-
exclusively with Ising and three-state Potts AF’s, respecformal anomaly and the decay-of-correlations expongnt
tively, on the triangular and square lattices. It is well estab-along it. The layout of the paper is as follows. In Sec. Il we
lished that, in the absence of an external magnetic field, botbutline our calculational procedure for the free energy and
systems display a critical ground stéte the sense that spin- the correlation length, from which we determine the confor-
spin correlations decay algebraically with distan@nd are  mal anomaly and the critical curve, respectively. Results for
paramagnetic for all temperatur€s-0 [1-5]. In both cases, the TIAF and SPAF-3 are presented in Secs. Ill and IV,
a uniform fieldH removes the residual entropy per spin, andrespectively. Section V summarizes our findings.
long-range order can set in at finite temperatures, below a
field-dependent phase boundary(H) [6,7]. Il. MODELS AND TRANSFER MATRIX SCALING
For the Ising antiferromagnet on the triangular lattice
(TIAF), the phase transition at,(H) has been determinedto ~ We consider infinitely long strips of width, with peri-
be in the 3-state ferromagnetic Potts model universality clasgdic boundary conditions in both directions. Ising or Potts
[6,8], subsequent ana|ysis in the context of conformal invari.spins sit on lattice sites and interact with each other, as well
ance[g] led to a conformal anoma]@r central Chargbc as with a uniform field, aCCOfding to the Hamiltoni@lﬂl'
=4/5, which is also consistent with the value for the three-cluding the multiplicative factor- 8= —1/kgT),
state Potts ferromagngt0]. Further, it has been found that
the critical phase at=H=0 extends intp a small regioh H= —KE 5U.U.+Hz s 1)
=0, H=<Hy;=0.27 [11-13; that is, H is not arelevant Gp M i '
scaling field atT=0, as initially thought[6]. At Hxt the
system undergoes a Kosterlitz-Thoulé&d) transition to a  Where the first sum runs over nearest-neighbor sites of either
long-range ordered stafd3]. Within the zero-temperature @ triangular or a square lattice, depending, respectively, on
critical phase, one has continuously-varying critical expo-Whethero; is taken to be 0 or Using), or 0, 1, or 2(three-
nents and, accordingljl4], the conformal anomaly is=1 state Pottg a convenient strip geometry for a triangular lat-
[13]. Much less is known about field effects on the three-tice corresponds to the usual square strip with additional
state Potts antiferromagnet on the square lattRRAF-3, bonds along a fixed diagonal directioK.is the exchange
apart from indications that, foH#0 the transition at the coupling constant and the field has been taken along the 0
correspondingT.(H) belongs to the two-dimensional Ising direction.
model universality clasf7]. We shall use units in which, for the triangular Isifes-
Since the scaling behavidie., relevance or marginality romagnetT; '=K.=3Iny/3, and for TIAF the upper critical
of the uniform field aff =0 influences the shape of the criti- field [such thaff ((H=H:)=0] is H,=6 [6,9]. For SPAF-3,
the corresponding quantities aT§1= In(y3+1) (ferromag-
ned, H.=4 [7].
*Present address: Colorado Center for Chaos and Complexity, As usual[15,16], the free energy per spifi (T,H) and
University of Colorado at Boulder, Boulder, CO 80309-0390. the correlation lengtlg, (T,H) are given by
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¢ - in advance: though in several ca$@8] numerical evidence
fL(T-H):_EIn N ENTH)=—=¢In(\2/\1) (2)  has been given in support =2, this is, in principle, a
nonuniversal quantity that depends on the pertinent operator
where\; (\,) is the largestsecond-largesteigenvalue of —algebra, and probably on lattice effects as well; e.g., for Ising
the transfer matrix between two successive columns; the gederromagnets on triangular and honeycomb lattices, it has
metric factor{=2/\/3 for triangular, and 1 for square lat- been found21] that w=4 fits Eq.(7) extremely well. At-
tices. tempts to keepw fixed at 2 in Eq.(6) for the present case
We have obtained finite-size estimates of the critical line'esulted in fits of widely varying quality. Thus we took a
by standard phenomeno|ogica| renormalization gr(R‘B(;) pragmatic VieW, and for eacH varied lﬂ within reasonable
procedure$§15,16}: for fixed H we consider pairs of strips of limits (to be spelt out beloyvuntil a good fit turned out.
respective widths andL’ and solve the implicit equation ~More often than not, the smallestierm[L=6(4) for TIAF
(SPAF-3] was discarded. Typical uncertainties f6f"(H)
Lg[l(T* JH)= L’g[,l(T* JH) 3 were one part in 19 which means that the dominant contri-
butions to final spreads in(H) andc(H) are attributable to
for the fixed-point temperatur&*. This approach is rather the respective extrapolations @ andc, to L—. From
safe because the only underlying assumption is that &q. (7), the corrections toy,_ of Eq. (5) are expected to
second-order phase transition occurs without any further hybehave ad. . Surprisingly, a fixedo=2 gave reasonably
pothesis on its universality class. As explained in detail begood fits throughout the range of fields investigated, for both
low, we will be particulary concerned with the proximity of models. For the conformal anomaly the additional unknown
(T=0, H=0), where crossover between different sorts off_(T.) arises; assuming corrections to scaling to @yalso
critical behavior is expected. Owing to sublattice symme-with =2 (in this case, such corrections have been shown to
tries,L andL’ must be both multiples of 3 for TIARwhere  work well for Potts[22] and Ising[23] ferromagnets we

we useL'=L—3, L=6,...,18), and 2 forlSPAF-3(re-  performed least-squares fits of our data to a parabolic form in
spectively L'=L—-2, L=4,...,12). At some special | ~2[23].

points, such asT=0, H=0), we went up toL=14 for Further, the field dependence ®fnd z can be analyzed
SPAF-3. within a finite-size scalindFSS theory of crossover effects

For each fixeH the sequence of finite-estimates ol [24]. We first assume the existence of two bulk correlation
was extrapolated against suitable inverse powets 86 that  |engths, £ and ¢': the former is only divergent aff
a set of temperaturet‘éx“(H) was produced, which repre- —0, H=0; the latter diverges both &—0, H=0 (i.e.,
sents our best approximation to the true critical curve. Wet~ £7 in this casg as well as aff .(H) >0, with different
then calculated the free energy and the correlation length faisymptotic forms. The two scaling variables are theég°
finite L, as in Eq.(2), at T'"(H). From these we produced andL/&", which allows us to cast the finite-size correlation
finite-size estimates of the conformal anomalyand the length and free energy in the forms
decay-of-correlations exponemt respectively, via

EL(TH)=LQ(L/E,LIET) (8)
c
LZ[fL(Tc)_fm(Tc)]:_Fy (4) and
and fL(TIH):LidR(L/golegT)a (9)
Lo respectively, wher€ andR are extended scaling functions.
n=———, (5)  The crucial difference between the scaling of these and of
&(Te) any other quantitye.g., susceptibility, specific heat, magne-

tization is that the leading power in the dependence is
fixed, instead of a ratio of critical exponentsy, which may
change fromxy/vg to x1/vy. Indeed, the mairH depen-
dence in the crossover function is expected to arise as
[f(H)]¢, with e=x¢/vr—Xg/vq [24]. Thus, low-order cor-
rections to the asymptotic behavior must be wiped out; the
Id-dependent crossovers in bofhandc are therefore ex-
pected to be quite fast. We shall see that these predictions are
borne out rather well by numerical data for SPAF-3. For
* _ | - TIAF, technical difficulties(to be describedconnected to
T(LH) = Te(H)~L % © extrapolation of the critical boundary translate into a more

It is expected 18,19 that = w+ 1/v, wherew is the lead- Mixed picture.
ing correction-to-scaling exponent:

as given by conformal invariandd.0,17), where theH de-
pendence ofl. (and thus, ofc and %) is implicitly under-
stood. The sequences of finiteestimatesc, and », were
again extrapolated tb— o to give the final values(H) and
n(H).

The extrapolated phase boundaries were usually obtain
under the simplifying assumption of single-power correc-
tions to scaling: for giverH we assumed

Ill. TRIANGULAR ISING ANTIFERROMAGNET

For TIAF in the range £H=<5.5, best fits to Eq6) were
andv is the correlation-length critical exponent, known to beattained withy/~ 3.5—5.5(higher values for lower fieldsIn
5/6 (1) for three-state Pottdsing) ferromagnet$relevant for  that region our PRG estimates extrapolate to values virtually
TIAF (SPAF-3 in nonzero field. However,w is not known identical to those found in Ref9]. Those authors started

EL(T)=AoL(1+AL “+---) @)
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TABLE I. SlopesS, and upper limitsH,,,,(L) of straight-line
portions of approximatéPRGQ critical lines for TIAF. From data
4 displayed in Fig. 1. Extr. stands for extrapolated_-as (see text
Hmax(6) is omitted, as extrapolation only todk=9—18 into ac-
i count.
] L S Hmax(L)
6 1.4979-0.0001 —
T 9 2.0414+0.0002 0.176:0.010
12 2.4564- 0.0002 0.136:0.010
. T T 15 2.8078-0.0002 0.1050.010
000 005 010 015 020 18 3.12060.0010 0.096:0.010
H Exr. 4.74-0.15 0.01+0.02

FIG. 1. PRG estimates of the critical line of TIAF near the
origin, obtained by solving Eq(3). L values given on figurel'  H __ (1) above which said curves begin to deviate from lin-
=L-3). ear behavior. Error bars fd (L) are somewhat subjec-

tive, but certainly quite conservative, as can be seen from
from the assumption that, for al#0, the TIAF is in the Visual inspection. Should—c extrapolation produce a
same universality class as the three-state two-dimensiongefinitely negative value dfi .., one could be sure that the
Potts ferromagndi6,8], and located the pointsT(H) where finite slope is a finite-size artifact. However, we have found
£.(T,H)=15L/47, corresponding top=4/15 as given by Hmax(°) =0.01+0.02 from a rather good scaling of our data
conformal invariancg17]. Procedures of this sort were put againstL .
forward by Blde and den Nij§20], and are expected to be ~ Bearing in mind that the only “small” typical field natu-
less vulnerable than PRG to numerical inaccuracies, prolly arising in the problemidyy, is one order of magnitude
vided the universality class of the transition is not in doubt.larger than thigthus a strictly positiveH () of order
However, near a multicritical poirtsuch asT=H=0 her¢ 10 * would have no clear physical originwe interpret the
crossover effects may also take their toll. Indeed, evergbove result as signaling thit, () is exactlyzero. Sofi)
though there is na priori reason to question universality in the critical line does leave the origin at a finite slofier
the present case, convergence of the data of[Rgfleterio-  Which our best estimate, 4.Z4.15, comes from extrapola-
rates rapidly close to the origin, to such an extent that thdion of the S_ againstL ~2); but (i) the straight-line part of
authors quote no extrapolations for the critical line fér  the critical curve is of zero extent: one only hé&T./dH?
<0.5. In our investigation, we found that for 0451<0.5 =0 at the origin. This latter quantity must be negative for all
the PRG curves crossed each other, thus making the extrapd->0, as no inflection points are expected.
lation procedure unworkable. An example can be seen near These conclusions are consistent with the presence of a
the right edge of Fig. 1 above, which also shows that closegritical phase on théd axis near the origin. The exponen-
to the origin the curves again behave monotonically againdially diverging correlation lengtH25] at H=0T—0 is
L. roughly in balance with théalready infinite £1 along the

Before giving details of extrapolation in that region, we zero-temperature axis. This way the critical line, where
recall that the shape of the loW- low-H phase boundary crossover between temperature- and field-dominated behav-
was discussed in Rdf6]. At the time it was believed thad ior takes place, starts at finite angles with both axes.
was a relevant scaling field aloiig=0, from which it was Going back to extrapolation of the critical line fortH
concluded that, since the correlation length diverges ass0.15, we first note that, by construction, our procedure of
exp@/T) [25] at H=0, T—0, the critical line should ap- fixedH extrapolation automatically yields a straight line
proach the origin tangentially to th€ axis. On the other with slope 4.74-0.15 for allH<H,,,,(18)=0.09. From the
hand, PRG withL=6 and 9, in the notation of our E¢3),  preceding arguments on the extent of the straight-line part,
yielded a finite slope at the origin. This was interpreted as @&nd concavity, of the critical curve, this is an upper limit:
deficiency of the calculational methd®]. Here we have T*/(H)<T*(H). Also, for 0.09<H<0.15 we have not
reexamined the matter by extending PRGQ._te 18, extrapo- managed to produce good fits with single powers; instead,
lating our data and making contact with the more recentve were forced to resort to two-power fits usihg?! and
results[12,13 that point to the existence of a Kosterlitz- L2, These facts have strong effects on the evaluatioa of

Thouless phase at=0, H#0. and » nearH =0, which we now turn to discuss.
In Fig. 1 the fixed-point solutions of E3) are displayed. Recall that atT=H=0 one has[25,13 c=1 and 7
Though convergence becomes prohibitively slow tdr =1/2, while for H#0 the three-state Potts values

=8x%10 3, there is plenty of leeway to establish that, as=4/5, n=4/15 are believed to hol@]. Our results forc
H—0, all our finiteL curves become straight lines whifle  and » along the extrapolated critical line, near the origin, are
within one part in 16-1CP) cross the origin. The straight shown in Fig. 2. From the discussion in Sec. Il one might
sections become shorter with growithg thus one must be assume that, apart from higher-order crossover effects, both
careful before predicting a finite slope at the origin for thequantities should behave in a step-function fashion. On the
actual phase diagram. In Table | we show the slope®f  contrary, we see that they hover around their zero-field val-
the straight sections of finitke-curves, as well as the values ues for a significant range df, which coincides with that
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1.00 - - The unitary value ofc has been predicted for the case

0.981 - R 1 [28,29 and is consistent with continuously-varying critical
’ \\i exponentq14], thus one might expect, e.g., a KT phase on
© .96 " . the T=0 axis, by analogy with TIAF. We shall return to this
point below. Our result fory apparently contradicts the di-
0.9471 (@ I\I\¥ rect evaluation of correlation functions of RE80], which
0.52] f t ] yields »=1.33=0.02. To explain this, we recall the predic-
‘ (b E\E tion of Ref.[4] which, for SPAF-3 with only first-neighbor
0.51 I/ ] interactions(in their languagev=1, u=27/3, yx=1/2),
< 0.50] - 1 reads
0.49 s .
0.48 . A B
0.00 0.05 0.10 0.15 GN= 5" 1 (1)

H

FIG. 2. Conformal anomaly (upper curvg and exponenty  whereG(r) is the critical (T=0) spin-spin correlation func-
(lower curve along the extrapolated critical line of TIAF near the tijon at distancer; the sign of the second term depends on
origin. Expected values ar@) H=0:c=1, n=1/2; (b) H#0:c  \yhether the two sites are on the same sublaftgethat is, it
=A4/5, n=4/15. is associated to the staggered magnetization. The result of

Ref. [30] is for correlations between spins on opposite cor-
where our extrapolation gives a straight line. Further omers of Nx N finite lattices withN=<15, thus it gives the
along theH axis, convergence begins to deteriorate. Takingjecay of the uniform magnetization, dominated at short dis-
into account(i) the conclusion that straight-line sections of (g ces by the first term of Eq11). Indeed, a plot of their
PRG curves are finite-size effects) the inescapable distor- gata in the formr#3G(r) againstr appears to approach a
tion imposed by them onto our constatht-extrapolations; straight line for larger, with A=1.4 andB=5x10"3. On
plus (iii) the fact that the true critical line is only expected t0 the other hand, by relying on the amplitude-exponent relation
be straightat the origin, where it is joined by the KT line, we given by conformal invariancgl7], our approach automati-
tentatively interpret the plateaulike behaviormfnd » as a cally picks up the behavior of the smallest gap longest
manifestation of the KT phase in an artificial, finite-size- ¢grrelation length of the transfer matrix, which indeed
induced fashion. We have not yet managed to propose gouples to the staggered magnetization. These considerations
numerical test of this idea; however, as shown in the neX{yere very recently rederived via a height representation of
sectior_n, a measure of self-consistency of the argument ige mode[31] and confirmed by numerical wof2]. In the
found in SPAF-3, where both the KT phase and the anomapresent case, our estimate is entirely consistent with the sec-
lous behavior ot and » are absent. Note also that, on gen-gnd term of Eqg.(11), and also with Monte Carlo work
eral grounds, estimates &f/ w¢(T,H) at T<TE"(H) (as [32,33.

T must be would certainly produce numerical values We have paid special attention to the shape of the critical
smallerthan those displayed agin the figure, which is not curve near the origin. Throughout the range 0862
inconsistent with the expectegl=4/15. Finally, as regards <=0.011, we managed good fits to E§) with ¢ in the range
0.10<sH< 1.0 (at which upper extremity one already has the4.9-6.7. For now, we concentrate on the analysis of that
results of Ref[9]), the above-mentioned difficulties with  region.

—oo extrapolations of PRG curves translate into unsur- We recall that, although it is agreed that in zero field the

mountable obstacles to estimationscadind 7. system is critical only al =0, there seems to be no consen-
sus about how the correlation length diverges, except in that
IV. SQUARE LATTICE THREE-STATE POTTS an exponential singularitg(T—0, H=0)=exp@/T") is
ANTIFERROMAGNET present. The value of has been variously estimated as 1.3

(by analysis of the Roomany-Wyld approximdi®4] in a

We begin the discussion of SPAF-3 by examining thetransfer-matrix calculatiofi3], and Monte CarldgMC) work

point T=H =0, where strips of maximum width=14 sites  [33]); 1 (further Monte Carlo work35]) and 3/4(conformal
were used. We have calculatedand » and found, after invariance arguments coupled with an analysis of the eigen-

extrapolation, value spectrum of the transfer matfixg]).
If we assume that, along thE=0 axis,H is a relevant
€c=0.999+0.001, %=0.333£0.001, (T=H=0). variable with scaling indeyy, a standard crossover argu-

(10 ment[6] implies that on the critical curv@,~|In H|~**. If,
on the other hand, an extended critical phase is present as in

Owing to the unusually slow convergence of finitedata for ~ TIAF, the results of Sec. lll indicate that such shape is un-
c in this case, we formed three-point fits with the setslikely to be found. To be fair, we must point out that there is
{fi(Ty)}, 1=L, L-2, L—4. The sequences af , each no compelling symmetry-based arguméhich as vortex un-
estimate resulting from a three-point fit, were then extrapopinning for TIAF[12,13)) that leads one to infer the possible
lated by a Bulirsch-Stoer algorithf26,27), which essen- existence of a soft phase here.
tially amounts to assuming a single-power correction to scal- In Fig. 3 we show our results fdF.|In H|** againstH for
ing. Our best fit corresponded to that power being around 2x=3/4,1,4/3 as well as our best fit for an asymptotically
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— 1.154 1.04 \+§I 1 ! . . .
I . 0.002 0.004 0006 1 0.35 Seqeeeey | :
=110 T~ —a—x=3/4 . |
= — e | ®) ]
I—O 1 \'E.v\ —v—x=1.08] 0.30 i ]
1.054 R \:\ 4/3 7 gl 1
At 0.25 % yon -
e 0.20 i : : :
0.002 0.004 0.006 0.008 0.010 0 1 |§| 3 4

H
. FIG. 4. Conformal anomalyg (upper curvgé and exponenty
FIG. 3. Plots ofT|in H|** for SPAF-3 forx=3/4, 1, 4/3, and  (jower curve along the extrapolated critical line of SPAF-3. Ex-
1.08. Inset: behavior of plots fox=0.95, 1.08, and 1.21 from pected values aréa) H=0:c=1, 7=1/3 (see text (b) H#0:c
which our central estimate and respective error bars,1.08 =1/2, p=1/4.

+0.13 have been extractésee text All curves normalized to one
atH=0.010. HereT,, stands for [ —x) extrapolated values. Error

bars coming from extrapolation are smaller than symbol sizes. tive Ising valuesc=1/2, 7=1/4. AtH=0.5 the curve foc

has a minimum. We used strips of width<14 to produce
horizontal i H-0 which ds tx=108 2N accurate estimate both ©f andc, which turned out as
orizontal line asH—u, which corresponds tox= 1. c=0.47+0.002. Thus we conclude that tHenaccounted

+0.13. Th|s est|mat.e and its respectwe error bar are bas%r) residual crossover effects produce deviations of order at
on analysis of the insert of the figure: thxe=1.21 curve most ~ 6%

flattens atH=0.002(the lowest field we can reagtso those
for x>1.21 certainly bend downwards before touching the
vertical axis. Analogously, thex=0.95 curve is roughly

straight, so those witR<<0.95 will be concave upwards. The e have studied critical properties of field-induced phase
central estimate is taken as the average of these upper ap@nsitions of selected two-dimensional antiferromagnets
lower limits. with discrete-symmetry order parameters. Throughout our
Thus we conclude thdt) there is no numerical evidence work, we attempted to minimize numerical effects originat-
of an extended critical phase &t 0, H#0); (ii) our data  ng from crossover between different universality classes, by
are consistent with an infinite slope of the critical curve atapplying carefully selected procedures both for finite-size
the origin, meanindvia the crossover argument aboBat  calculations and for extrapolation of finite-size data to the
(iii) the zero-field correlation length diverges with-0 as  infinite-lattice limit. For TIAF we did not entirely succeed,
§(T—0, H=0)=exp@T"), x=1.08+0.13. owing mainly to residual effects ascribed to a Kosterlitz-
Of all previously available estimates, the latter valuxof Thouless phase along the zero-temperature axis. For
is only consistent with the Monte Carlo results of R&5].  SPAF-3, where our evidence shows that such phase is not

Those authors mention possible logarithmic correctionspresent, we present results which are clean and unambigu-
which would give an enhanced effective exponent. Thispus, for all quantities investigated.

would also be in line with the fact that our central estimate is  Our main findings are summarized as follows. For TIAF,
slightly above unity. we have shown that the critical line leaves the zero-

Further on along thél axis, for 0.013<H<0.18 the PRG  temperature, zero-field fixed point at a finite angle. Our best
curves forL =8, 10, and 12 crossed each other at nearly zer@stimate of the slope at the origin i T /dH) 1— -0
angle. In that region, we simply took straight-line fits of the =4.74+0.15. For SPAF-3 we provided evidence that the
three respective values g againstL™* to obtain ¢ zero-field correlation length diverges aqT—0H=0)
However, for H=0.2 monotonic behavior returned, once =exp@/T*), with x=1.08+0.13, through analysis of the
again allowing the use of E¢6) with y~2.1-5.9. Addition-  critical curve atH +# 0 plus crossover arguments. For SPAF-3
ally, sections of the extrapolated critical line matched oneye have also ascertained that the conformal anomaly and
another so well across the gap that they are joined by cordecay-of-correlations exponent behave & H=0:c
tinuous lines. =1, »=1/3; (b) H#0:c=1/2, n=1/4.

In Fig. 4, estimates of botband » along the extrapolated
critical line are displayed. One can see that for both quanti-
ties, the somewhahd hoc extrapolation procedure in the
intermediated region produces sensible estimates, which We thank the Laborat® Nacional de Comput@o Cien-
join the adjacent sequences rather smoothly. tifica (LNCC) for use of their computational facilities, and

Further, this time the predictions of Sec. Il are seen tahe Brazilian agencies CNPq, FINEP, and FAPERJ for finan-
hold: apart from higher-order crossover effects, both quantieial support. S.L.A.dQ thanks the Department of Theoretical
ties behave close to step-functions, converging to the respe@hysics at Oxford, where parts of this work were carried out,
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