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Field-induced ordering in critical antiferromagnets

S. L. A. de Queiroz, Thereza Paiva, Jorge S. de Sa´ Martins,* and Raimundo R. dos Santos
Instituto de Fı´sica, Universidade Federal Fluminense, Avenida Litoraˆnea s/n, 24210-340 Nitero´i, Rio de Janeiro, Brazil

~Received 19 August 1998!

Transfer-matrix scaling methods have been used to study critical properties of field-induced phase transitions
of two distinct two-dimensional antiferromagnets with discrete-symmetry order parameters: triangular-lattice
Ising systems~TIAF! and the square-lattice three-state Potts model~SPAF-3!. Our main findings are summa-
rized as follows. For TIAF, we have shown that the critical line leaves the zero-temperature, zero-field fixed
point at a finite angle. Our best estimate of the slope at the origin is (dTc /dH)T5H5054.7460.15. For
SPAF-3 we provided evidence that the zero-field correlation length diverges asj(T→0, H50).exp(a/Tx),
with x51.0860.13, through analysis of the critical curve atHÞ0 plus crossover arguments. For SPAF-3 we
have also ascertained that the conformal anomaly and decay-of-correlations exponent behave as~a! H50:c
51, h51/3. ~b! HÞ0:c51/2, h51/4. @S1063-651X~99!11403-X#

PACS number~s!: 05.50.1q, 05.70.Jk, 64.60.Fr, 75.10.Nr
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I. INTRODUCTION

Frustrated systems with macroscopically degene
ground states still pose intriguing theoretical challenges.
pure Ising andq-state Potts antiferromagnets~AF’s!, in par-
ticular, this degeneracy results solely from the interplay
tween ‘‘dynamics’’~i.e., the number of states per lattice sit!
and geometry~lattice topology!. In this paper we shall dea
exclusively with Ising and three-state Potts AF’s, resp
tively, on the triangular and square lattices. It is well est
lished that, in the absence of an external magnetic field, b
systems display a critical ground state~in the sense that spin
spin correlations decay algebraically with distance!, and are
paramagnetic for all temperaturesT.0 @1–5#. In both cases,
a uniform fieldH removes the residual entropy per spin, a
long-range order can set in at finite temperatures, belo
field-dependent phase boundaryTc(H) @6,7#.

For the Ising antiferromagnet on the triangular latti
~TIAF!, the phase transition atTc(H) has been determined t
be in the 3-state ferromagnetic Potts model universality c
@6,8#; subsequent analysis in the context of conformal inva
ance@9# led to a conformal anomaly~or central charge! c
54/5, which is also consistent with the value for the thre
state Potts ferromagnet@10#. Further, it has been found tha
the critical phase atT5H50 extends into a small regionT
50, H<HKT.0.27 @11–13#; that is, H is not a relevant
scaling field atT50, as initially thought@6#. At HKT the
system undergoes a Kosterlitz-Thouless~KT! transition to a
long-range ordered state@13#. Within the zero-temperature
critical phase, one has continuously-varying critical exp
nents and, accordingly@14#, the conformal anomaly isc51
@13#. Much less is known about field effects on the thre
state Potts antiferromagnet on the square lattice~SPAF-3!,
apart from indications that, forHÞ0 the transition at the
correspondingTc(H) belongs to the two-dimensional Isin
model universality class@7#.

Since the scaling behavior~i.e., relevance or marginality!
of the uniform field atT50 influences the shape of the crit
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cal curve nearT5H50 in a fundamental way, an accura
evaluation ofTc(H) is clearly of interest. With this in mind
here we investigate the finite-temperature field-induced tr
sition in both the TIAF and the SPAF-3, by means
transfer-matrix scaling methods@15,16#. For TIAF we con-
centrate on the shape of the critical curve close toT5H
50, for reasons to be stated in the corresponding section.
SPAF-3 we determine the critical curve, as well as the c
formal anomaly and the decay-of-correlations exponenh
along it. The layout of the paper is as follows. In Sec. II w
outline our calculational procedure for the free energy a
the correlation length, from which we determine the conf
mal anomaly and the critical curve, respectively. Results
the TIAF and SPAF-3 are presented in Secs. III and
respectively. Section V summarizes our findings.

II. MODELS AND TRANSFER MATRIX SCALING

We consider infinitely long strips of widthL, with peri-
odic boundary conditions in both directions. Ising or Po
spins sit on lattice sites and interact with each other, as w
as with a uniform field, according to the Hamiltonian~in-
cluding the multiplicative factor2b521/kBT),

H52K(
^ i , j &

ds is j
1H(

i
ds i0

, ~1!

where the first sum runs over nearest-neighbor sites of ei
a triangular or a square lattice, depending, respectively,
whethers i is taken to be 0 or 1~Ising!, or 0, 1, or 2~three-
state Potts!; a convenient strip geometry for a triangular la
tice corresponds to the usual square strip with additio
bonds along a fixed diagonal direction.K is the exchange
coupling constant and the fieldH has been taken along the
direction.

We shall use units in which, for the triangular Isingfer-
romagnet,Tc

215Kc5 1
2 lnA3, and for TIAF the upper critical

field @such thatTc(H>Hc)50# is Hc56 @6,9#. For SPAF-3,
the corresponding quantities areTc

215 ln(A311) ~ferromag-
net!, Hc54 @7#.

As usual@15,16#, the free energy per spinf L(T,H) and
the correlation lengthjL(T,H) are given by

ty,
2772 ©1999 The American Physical Society
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f L~T,H !52
z

b
ln l1 ; jL

21~T,H !52z ln~l2 /l1! ~2!

wherel1 (l2) is the largest~second-largest! eigenvalue of
the transfer matrix between two successive columns; the
metric factorz52/A3 for triangular, and 1 for square la
tices.

We have obtained finite-size estimates of the critical l
by standard phenomenological renormalization group~PRG!
procedures@15,16#: for fixed H we consider pairs of strips o
respective widthsL andL8 and solve the implicit equation

LjL
21~T* ,H !5L8jL8

21
~T* ,H ! ~3!

for the fixed-point temperatureT* . This approach is rathe
safe because the only underlying assumption is tha
second-order phase transition occurs without any further
pothesis on its universality class. As explained in detail
low, we will be particulary concerned with the proximity o
(T50, H50), where crossover between different sorts
critical behavior is expected. Owing to sublattice symm
tries,L andL8 must be both multiples of 3 for TIAF~where
we useL85L23, L56, . . . ,18), and 2 forSPAF-3 ~re-
spectively L85L22, L54, . . . ,12). At some special
points, such as (T50, H50), we went up toL514 for
SPAF-3.

For each fixedH the sequence of finite-L estimates ofT*
was extrapolated against suitable inverse powers ofL, so that
a set of temperaturesTc

extr(H) was produced, which repre
sents our best approximation to the true critical curve.
then calculated the free energy and the correlation length
finite L, as in Eq.~2!, at Tc

extr(H). From these we produce
finite-size estimates of the conformal anomalyc and the
decay-of-correlations exponenth, respectively, via

L2@ f L~Tc!2 f `~Tc!#52
pc

6
, ~4!

and

h5
Lp

j~Tc!
, ~5!

as given by conformal invariance@10,17#, where theH de-
pendence ofTc ~and thus, ofc and h) is implicitly under-
stood. The sequences of finite-L estimatescL and hL were
again extrapolated toL→` to give the final valuesc(H) and
h(H).

The extrapolated phase boundaries were usually obta
under the simplifying assumption of single-power corre
tions to scaling: for givenH we assumed

T* ~L,H !2Tc~H !;L2c. ~6!

It is expected@18,19# that c5v11/n, wherev is the lead-
ing correction-to-scaling exponent:

jL~Tc!5A0L~11A1L2v1••• ! ~7!

andn is the correlation-length critical exponent, known to
5/6 ~1! for three-state Potts~Ising! ferromagnets@relevant for
TIAF ~SPAF-3! in nonzero field#. However,v is not known
o-
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in advance: though in several cases@20# numerical evidence
has been given in support ofv52, this is, in principle, a
nonuniversal quantity that depends on the pertinent oper
algebra, and probably on lattice effects as well; e.g., for Is
ferromagnets on triangular and honeycomb lattices, it
been found@21# that v54 fits Eq. ~7! extremely well. At-
tempts to keepv fixed at 2 in Eq.~6! for the present case
resulted in fits of widely varying quality. Thus we took
pragmatic view, and for eachH variedc within reasonable
limits ~to be spelt out below! until a good fit turned out.
More often than not, the smallest-L term @L56(4) for TIAF
~SPAF-3!# was discarded. Typical uncertainties forTc

extr(H)
were one part in 104, which means that the dominant contr
butions to final spreads inh(H) andc(H) are attributable to
the respective extrapolations ofhL and cL to L→`. From
Eq. ~7!, the corrections tohL of Eq. ~5! are expected to
behave asL2v. Surprisingly, a fixedv52 gave reasonably
good fits throughout the range of fields investigated, for b
models. For the conformal anomaly the additional unkno
f `(Tc) arises; assuming corrections to scaling to Eq.~4! also
with v52 ~in this case, such corrections have been show
work well for Potts @22# and Ising @23# ferromagnets! we
performed least-squares fits of our data to a parabolic form
L22 @23#.

Further, the field dependence ofc andh can be analyzed
within a finite-size scaling~FSS! theory of crossover effects
@24#. We first assume the existence of two bulk correlati
lengths, j0 and jT: the former is only divergent atT
→0, H50; the latter diverges both atT→0, H50 ~i.e.,
j0;jT in this case!, as well as atTc(H).0, with different
asymptotic forms. The two scaling variables are thenL/j0

andL/jT, which allows us to cast the finite-size correlatio
length and free energy in the forms

jL
T~T,H !5LQ~L/j0,L/jT! ~8!

and

f L~T,H !5L2dR~L/j0,L/jT!, ~9!

respectively, whereQ andR are extended scaling functions
The crucial difference between the scaling of these and
any other quantity~e.g., susceptibility, specific heat, magn
tization! is that the leading power in theL dependence is
fixed, instead of a ratio of critical exponents,x/n, which may
change fromx0 /n0 to xT /nT . Indeed, the mainH depen-
dence in the crossover function is expected to arise
@ f (H)#e, with e5xT /nT2x0 /n0 @24#. Thus, low-order cor-
rections to the asymptotic behavior must be wiped out;
field-dependent crossovers in bothh andc are therefore ex-
pected to be quite fast. We shall see that these prediction
borne out rather well by numerical data for SPAF-3. F
TIAF, technical difficulties~to be described! connected to
extrapolation of the critical boundary translate into a mo
mixed picture.

III. TRIANGULAR ISING ANTIFERROMAGNET

For TIAF in the range 1<H<5.5, best fits to Eq.~6! were
attained withc;3.5–5.5~higher values for lower fields!. In
that region our PRG estimates extrapolate to values virtu
identical to those found in Ref.@9#. Those authors starte
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from the assumption that, for allHÞ0, the TIAF is in the
same universality class as the three-state two-dimensi
Potts ferromagnet@6,8#, and located the points (T,H) where
jL(T,H)515L/4p, corresponding toh54/15 as given by
conformal invariance@17#. Procedures of this sort were pu
forward by Blöte and den Nijs@20#, and are expected to b
less vulnerable than PRG to numerical inaccuracies, p
vided the universality class of the transition is not in dou
However, near a multicritical point~such asT5H50 here!
crossover effects may also take their toll. Indeed, e
though there is noa priori reason to question universality i
the present case, convergence of the data of Ref.@9# deterio-
rates rapidly close to the origin, to such an extent that
authors quote no extrapolations for the critical line forH
<0.5. In our investigation, we found that for 0.15&H&0.5
the PRG curves crossed each other, thus making the extr
lation procedure unworkable. An example can be seen n
the right edge of Fig. 1 above, which also shows that clo
to the origin the curves again behave monotonically aga
L.

Before giving details of extrapolation in that region, w
recall that the shape of the low-T, low-H phase boundary
was discussed in Ref.@6#. At the time it was believed thatH
was a relevant scaling field alongT50, from which it was
concluded that, since the correlation length diverges
exp(a/T) @25# at H50, T→0, the critical line should ap-
proach the origin tangentially to theT axis. On the other
hand, PRG withL56 and 9, in the notation of our Eq.~3!,
yielded a finite slope at the origin. This was interpreted a
deficiency of the calculational method@6#. Here we have
reexamined the matter by extending PRG toL518, extrapo-
lating our data and making contact with the more rec
results @12,13# that point to the existence of a Kosterlitz
Thouless phase atT50, HÞ0.

In Fig. 1 the fixed-point solutions of Eq.~3! are displayed.
Though convergence becomes prohibitively slow forH
&831023, there is plenty of leeway to establish that,
H→0, all our finite-L curves become straight lines which~to
within one part in 104–105) cross the origin. The straigh
sections become shorter with growingL, thus one must be
careful before predicting a finite slope at the origin for t
actual phase diagram. In Table I we show the slopesSL of
the straight sections of finite-L curves, as well as the value

FIG. 1. PRG estimates of the critical line of TIAF near th
origin, obtained by solving Eq.~3!. L values given on figure (L8
5L23).
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Hmax(L) above which said curves begin to deviate from li
ear behavior. Error bars forHmax(L) are somewhat subjec
tive, but certainly quite conservative, as can be seen fr
visual inspection. ShouldL→` extrapolation produce a
definitely negative value ofHmax, one could be sure that th
finite slope is a finite-size artifact. However, we have fou
Hmax(`)50.0160.02 from a rather good scaling of our da
againstL21.

Bearing in mind that the only ‘‘small’’ typical field natu
rally arising in the problem,HKT , is one order of magnitude
larger than this@thus a strictly positiveHmax(`) of order
1022 would have no clear physical origin#, we interpret the
above result as signaling thatHmax(`) is exactlyzero. So,~i!
the critical line does leave the origin at a finite slope~for
which our best estimate, 4.7460.15, comes from extrapola
tion of theSL againstL22); but ~ii ! the straight-line part of
the critical curve is of zero extent: one only hasd2Tc /dH2

50 at the origin. This latter quantity must be negative for
H.0, as no inflection points are expected.

These conclusions are consistent with the presence
critical phase on theH axis near the origin. The exponen
tially diverging correlation length@25# at H50,T→0 is
roughly in balance with the~already infinite! jKT along the
zero-temperature axis. This way the critical line, whe
crossover between temperature- and field-dominated be
ior takes place, starts at finite angles with both axes.

Going back to extrapolation of the critical line for 0,H
&0.15, we first note that, by construction, our procedure
fixed-H extrapolation automatically yields a straight lin
with slope 4.7460.15 for allH<Hmax(18).0.09. From the
preceding arguments on the extent of the straight-line p
and concavity, of the critical curve, this is an upper lim
Tc

real(H)<Tc
extr(H). Also, for 0.09<H&0.15 we have not

managed to produce good fits with single powers; inste
we were forced to resort to two-power fits usingL21 and
L22. These facts have strong effects on the evaluation oc
andh nearH50, which we now turn to discuss.

Recall that atT5H50 one has@25,13# c51 and h
51/2, while for HÞ0 the three-state Potts valuesc
54/5, h54/15 are believed to hold@9#. Our results forc
andh along the extrapolated critical line, near the origin, a
shown in Fig. 2. From the discussion in Sec. II one mig
assume that, apart from higher-order crossover effects,
quantities should behave in a step-function fashion. On
contrary, we see that they hover around their zero-field v
ues for a significant range ofH, which coincides with that

TABLE I. SlopesSL and upper limitsHmax(L) of straight-line
portions of approximate~PRG! critical lines for TIAF. From data
displayed in Fig. 1. Extr. stands for extrapolated asL→` ~see text!.
Hmax(6) is omitted, as extrapolation only tookL59218 into ac-
count.

L SL Hmax(L)

6 1.497960.0001 —
9 2.041460.0002 0.17060.010

12 2.456460.0002 0.13060.010
15 2.807860.0002 0.10560.010
18 3.120060.0010 0.09060.010

Extr. 4.7460.15 0.0160.02
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where our extrapolation gives a straight line. Further
along theH axis, convergence begins to deteriorate. Tak
into account~i! the conclusion that straight-line sections
PRG curves are finite-size effects;~ii ! the inescapable distor
tion imposed by them onto our constant-H extrapolations;
plus ~iii ! the fact that the true critical line is only expected
be straightat the origin, where it is joined by the KT line, w
tentatively interpret the plateaulike behavior ofc andh as a
manifestation of the KT phase in an artificial, finite-siz
induced fashion. We have not yet managed to propos
numerical test of this idea; however, as shown in the n
section, a measure of self-consistency of the argumen
found in SPAF-3, where both the KT phase and the ano
lous behavior ofc andh are absent. Note also that, on ge
eral grounds, estimates ofL/pj(T,H) at T,TC

extr(H) ~as
Tc

real must be! would certainly produce numerical value
smaller than those displayed ash in the figure, which is not
inconsistent with the expectedh54/15. Finally, as regards
0.10<H,1.0 ~at which upper extremity one already has t
results of Ref.@9#!, the above-mentioned difficulties withL
→` extrapolations of PRG curves translate into uns
mountable obstacles to estimations ofc andh.

IV. SQUARE LATTICE THREE-STATE POTTS
ANTIFERROMAGNET

We begin the discussion of SPAF-3 by examining t
point T5H50, where strips of maximum widthL514 sites
were used. We have calculatedc and h and found, after
extrapolation,

c50.99960.001, h50.33360.001, ~T5H50!.
~10!

Owing to the unusually slow convergence of finite-L data for
c in this case, we formed three-point fits with the se
$ f l(Tc)%, l 5L, L22, L24. The sequences ofcL , each
estimate resulting from a three-point fit, were then extra
lated by a Bulirsch-Stoer algorithm@26,27#, which essen-
tially amounts to assuming a single-power correction to s
ing. Our best fit corresponded to that power being aroun

FIG. 2. Conformal anomalyc ~upper curve! and exponenth
~lower curve! along the extrapolated critical line of TIAF near th
origin. Expected values are~a! H50:c51, h51/2; ~b! HÞ0:c
54/5, h54/15.
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The unitary value ofc has been predicted for the cas
@28,29# and is consistent with continuously-varying critic
exponents@14#, thus one might expect, e.g., a KT phase
theT50 axis, by analogy with TIAF. We shall return to th
point below. Our result forh apparently contradicts the di
rect evaluation of correlation functions of Ref.@30#, which
yields h51.3360.02. To explain this, we recall the predic
tion of Ref. @4# which, for SPAF-3 with only first-neighbor
interactions~in their language:v51, m52p/3, yK51/2),
reads

G~r !.
A

r 4/3
6

B

r 1/3
, ~11!

whereG(r ) is the critical (T50) spin-spin correlation func-
tion at distancer; the sign of the second term depends
whether the two sites are on the same sublattice@4#, that is, it
is associated to the staggered magnetization. The resu
Ref. @30# is for correlations between spins on opposite c
ners of N3N finite lattices withN<15, thus it gives the
decay of the uniform magnetization, dominated at short d
tances by the first term of Eq.~11!. Indeed, a plot of their
data in the formr 4/3G(r ) againstr appears to approach
straight line for larger, with A.1.4 andB.531023. On
the other hand, by relying on the amplitude-exponent relat
given by conformal invariance@17#, our approach automati
cally picks up the behavior of the smallest gap~or longest
correlation length! of the transfer matrix, which indeed
couples to the staggered magnetization. These considera
were very recently rederived via a height representation
the model@31# and confirmed by numerical work@32#. In the
present case, our estimate is entirely consistent with the
ond term of Eq.~11!, and also with Monte Carlo work
@32,33#.

We have paid special attention to the shape of the crit
curve near the origin. Throughout the range 0.002<H
<0.011, we managed good fits to Eq.~6! with c in the range
4.9–6.7. For now, we concentrate on the analysis of t
region.

We recall that, although it is agreed that in zero field t
system is critical only atT50, there seems to be no conse
sus about how the correlation length diverges, except in
an exponential singularityj(T→0, H50).exp(a/Tx) is
present. The value ofx has been variously estimated as 1
~by analysis of the Roomany-Wyld approximant@34# in a
transfer-matrix calculation@3#, and Monte Carlo~MC! work
@33#!; 1 ~further Monte Carlo work@35#! and 3/4~conformal
invariance arguments coupled with an analysis of the eig
value spectrum of the transfer matrix@28#!.

If we assume that, along theT50 axis, H is a relevant
variable with scaling indexyH , a standard crossover argu
ment @6# implies that on the critical curveTc;u ln Hu21/x. If,
on the other hand, an extended critical phase is present
TIAF, the results of Sec. III indicate that such shape is u
likely to be found. To be fair, we must point out that there
no compelling symmetry-based argument~such as vortex un-
pinning for TIAF @12,13#! that leads one to infer the possib
existence of a soft phase here.

In Fig. 3 we show our results forTcu ln Hu1/x againstH for
x53/4,1,4/3 as well as our best fit for an asymptotica
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horizontal line asH→0, which corresponds tox51.08
60.13. This estimate and its respective error bar are ba
on analysis of the insert of the figure: thex51.21 curve
flattens atH.0.002~the lowest field we can reach!, so those
for x.1.21 certainly bend downwards before touching t
vertical axis. Analogously, thex50.95 curve is roughly
straight, so those withx,0.95 will be concave upwards. Th
central estimate is taken as the average of these upper
lower limits.

Thus we conclude that~i! there is no numerical evidenc
of an extended critical phase at (T50, HÞ0); ~ii ! our data
are consistent with an infinite slope of the critical curve
the origin, meaning~via the crossover argument above! that
~iii ! the zero-field correlation length diverges withT→0 as
j(T→0, H50).exp(a/Tx), x51.0860.13.

Of all previously available estimates, the latter value ox
is only consistent with the Monte Carlo results of Ref.@35#.
Those authors mention possible logarithmic correctio
which would give an enhanced effective exponent. T
would also be in line with the fact that our central estimate
slightly above unity.

Further on along theH axis, for 0.013<H<0.18 the PRG
curves forL58, 10, and 12 crossed each other at nearly z
angle. In that region, we simply took straight-line fits of t
three respective values ofT* againstL21 to obtainTc

extr .
However, for H>0.2 monotonic behavior returned, onc
again allowing the use of Eq.~6! with c;2.1–5.9. Addition-
ally, sections of the extrapolated critical line matched o
another so well across the gap that they are joined by c
tinuous lines.

In Fig. 4, estimates of bothc andh along the extrapolated
critical line are displayed. One can see that for both qua
ties, the somewhatad hoc extrapolation procedure in th
intermediate-H region produces sensible estimates, wh
join the adjacent sequences rather smoothly.

Further, this time the predictions of Sec. II are seen
hold: apart from higher-order crossover effects, both qua
ties behave close to step-functions, converging to the res

FIG. 3. Plots ofTcu ln Hu1/x for SPAF-3 forx53/4, 1, 4/3, and
1.08. Inset: behavior of plots forx50.95, 1.08, and 1.21 from
which our central estimate and respective error bars,x51.08
60.13 have been extracted~see text!. All curves normalized to one
at H50.010. HereTc stands for (L→`) extrapolated values. Erro
bars coming from extrapolation are smaller than symbol sizes.
ed

e

nd

t
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s
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tive Ising valuesc51/2, h51/4. At H50.5 the curve forc
has a minimum. We used strips of widthL<14 to produce
an accurate estimate both ofTc and c, which turned out as
c50.4760.002. Thus we conclude that the~unaccounted
for! residual crossover effects produce deviations of orde
most;6%.

V. CONCLUSIONS

We have studied critical properties of field-induced pha
transitions of selected two-dimensional antiferromagn
with discrete-symmetry order parameters. Throughout
work, we attempted to minimize numerical effects origina
ing from crossover between different universality classes,
applying carefully selected procedures both for finite-s
calculations and for extrapolation of finite-size data to t
infinite-lattice limit. For TIAF we did not entirely succeed
owing mainly to residual effects ascribed to a Kosterli
Thouless phase along the zero-temperature axis.
SPAF-3, where our evidence shows that such phase is
present, we present results which are clean and unamb
ous, for all quantities investigated.

Our main findings are summarized as follows. For TIA
we have shown that the critical line leaves the ze
temperature, zero-field fixed point at a finite angle. Our b
estimate of the slope at the origin is (dTc /dH)T5H50
54.7460.15. For SPAF-3 we provided evidence that t
zero-field correlation length diverges asj(T→0,H50)
.exp(a/Tx), with x51.0860.13, through analysis of the
critical curve atHÞ0 plus crossover arguments. For SPAF
we have also ascertained that the conformal anomaly
decay-of-correlations exponent behave as~a! H50:c
51, h51/3; ~b! HÞ0:c51/2, h51/4.
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